Dewasa ini sudah banyak berkembang bahasa-bahasa pemrograman tingkat tinggi yang pemakaiannya sudah sangat mudah, hanya tinggal klik dan drag saja. Meskipun demikian, tetap saja programmer harus menuliskan kode-kode program agar objek-objek yang sudah dibuat dapat bertingkah laku atau bekerja sesuai dengan yang diinginkan. Dalam sebuah program pasti terdapat alur logika yang menyebabkan program tersebut dapat bekerja dengan benar, dan sebagian besar pasti menggunakan pengelolaan data yang terstruktur.
Struktur data adalah cara menyimpan atau merepresentasikan data didalam komputer agar bisa dipakai secara efisien. Sedangkan data adalah representasi dari fakta dunia nyata. Fakta atau keterangan tentang kenyataan yang disimpan, direkam atau direpresentasikan dalam bentuk tulisan, suara, gambar, sinyal atau simbol.
Secara garis besar tipe data dapat dikategorikan menjadi:
- Type data sederhana tunggal, misalnya Integer, real, boolean dan karakter.
- Type data sederhana majemuk, misalnya String
Struktur Data, meliputi:
- Struktur data sederhana, misalnya array dan record.
- Struktur data majemuk, yang terdiri dari:
- Linier : Stack, Queue, serta List dan Multilist
- Non Linier : Pohon Biner dan Graph
Pemakaian struktur data yang tepat di dalam proses pemrograman akan menghasilkan algoritma yang lebih jelas dan tepat, sehingga menjadikan program secara keseluruhan lebih efesien dan sederhana.
Penjelasan Contoh Struktur Data :
- Larik (Array)
Larik dapat diakses berdasarkan indeksnya. Indeks larik umumnya dimulai dari 0 dan ada pula yang dimulai dari angka bukan 0. Pengaksesan larik biasanya dibuat dengan menggunakan perulangan (looping).
Larik Satu Dimensi
Larik satu dimensi merupakan jenis larik dasar dan jenis larik yang paling sering digunakan, pemakaian larik satu dimensi terutama dipakai dalam tipe data string (terutama dalam bahasa Bahasa pemrograman C).
Larik satu dimensi merupakan jenis larik dasar dan jenis larik yang paling sering digunakan, pemakaian larik satu dimensi terutama dipakai dalam tipe data string (terutama dalam bahasa Bahasa pemrograman C).
Larik Dua Dimensi
Larik dua dimensi merupakan tipe larik yang lain. Larik dua dimensi sering dipakai untuk merepresentasikan tabel dan matriks dalam pemrograman.
Larik dua dimensi merupakan tipe larik yang lain. Larik dua dimensi sering dipakai untuk merepresentasikan tabel dan matriks dalam pemrograman.
- Stack (Tumpukan)
Dalam ilmu komputer, stack atau tumpukan merupakan sebuah koleksi objek yang menggunakan prinsip LIFO (Last In First Out), yaitu data yang terakhr kali dimasukkan akan pertama kali keluar dari stack tersebut. Stack dapat diimplementasikan sebagai representasi berkait atau kontigu (dengan tabel fix). Ciri Stack :
* Elemen TOP (puncak) diketahui
* penisipan dan penghapusan elemen selalu dilakukan di TOP
* LIFO
Pemanfaatan Stack :
* Perhitungan ekspresi aritmatika (posfix)
* algoritma backtraking (runut balik)
* algoritma rekursif
Operasi Stack yang biasanya :
a. Push (input E : typeelmt, input/output data : stack): menambahkan sebuah elemen ke stack
b. Pop (input/output data : stack, output E : typeelmt ) : menghapus sebuah elemen stack
c. IsEmpty ()
d. IsFull ()
e. dan beberapas selektor yang lain
- Pohon (Tree)
Dalam ilmu komputer, sebuahPohon adalah suatu struktur data yang digunakan secara luas yang menyerupai struktur pohon dengan sejumlah simpul yang terhubung.
Simpul (node)
Sebuah Simpul dapat mengandung sebuah nilai atau suatu kondisi atau menggambarkan sebuah struktur data terpisah atau sebuah bagian pohon itu sendiri. Setiap simpul dalam sebuah pohon memiliki nol atau lebih simpul anak (child nodes), yang berada dibawahnya dalam pohon (menurut perjanjian, pohon berkembang ke bawah, tidak seperti yang dilakukannya di alam). Sebuah simpul yang memiliki anak dinamakan simpul ayah (parent node) atau simpul leluhur (ancestor node) atau superior. Sebuah simpul paling banyak memiliki satu ayah. Tinggi dari pohon adalah panjang maksimal jalan ke sebuah daun dari simpul tersebut. Tinggi dari akar adalah tinggi dari pohon. Kedalaman dari sebuah simpul adalah panjang jalan ke akarnya dari simpul tersebut.
Akar (Root nodes)
Simpul yang paling atas dalam pohon adalah akar (root node). Menjadi simpul teratas, simpul akar tidak akan memiliki orang tua. Ini merupakan simpul di mana biasanya merupakan tempat untuk memulai operasi dalam pohon (walaupun beberapa algoritma dimulai dengan daun dan berakhir pada akar). Semua simpul yang lain dapat dicapai dari akar dengan menelusuri pinggiran atau pranala. (Dalam definisi resmi, setiap jalan adalah khas). Dalam diagram, ini secara khusus di gambar paling atas. Di beberapa pohon, seperti heap, akar memiliki sifat khusus. Setiap simpul dalam sebuah pohon dapat dilihat sebagai akar dari sub pohon yang berakar pada simpul tersebut.
Daun (Leaf nodes)
Semua simpul yang berada pada tingkat terendah dari pohon dinamakan daun (leaf node). Sejak mereka terletak pada tingkat paling bawah, mereka tidak memiliki anak satupun. Seringkali, daun merupakan simpul terjauh dari akar. Dalam teori grafik, sebuah daun adalah sebuah sudut dengan tingkat 1 selain akar (kecuali jika pohonnya hanya memiliki satu sudut; maka akarnya adalah daunnya juga). Setiap pohon memiliki setidaknya satu daun. Dalam pohon berdasarkan genetic programming sebuah daun (juga dibilang terminal) adalah bagian terluar dari sebuah program pohon. Jika dibandingkan dengan fungsinya atau simpul dalam, daun tidak memiliki argumen. Di banyak kasus dalam daun-GP input ke programnya.
Simpul dalam (Internal nodes)
Sebuah simpul dalam adalah semua simpul dari pohon yang memiliki anak dan bukan merupakan daun. Beberapa pohon hanya menyimpan data didalam simpul dalam, meskipun ini mempengaruhi dinamika penyimpanan data dalam pohon. Sebegai contoh, dengan daun yang kosong, seseorang dapat menyimpan sebuah pohon kosong dengan satu daun. Bagaimanapun juga dengan daun yang dapat menyimpan data, tidak dimungkinkan untuk menyimpan pohon kosong kecuali jika seseorang memberikan beberapa jenis penanda data di daun yang menandakan bahwa daun tersebut seharusnya kosong (dengan demikian pohon itu seharusnya kosong juga). Sebaliknya, beberapa pohon hanya menyimpan data dalam daun, dan menggunakan simpul dalam untuk menampung metadata yang lain, seperti jarak nilai dalam sub pohon yang berakar pada simpul tersebut. Jenis pohon ini berguna untuk jarak yang meragukan.
Sub pohon (Subtrees)
Sebuah sub pohon adalah suatu bagian dari pohon struktur data yang dapat dilihat sebagai sebuah pohon lain yang berdiri sendiri. Simpul apapun dalam pohon P, bersama dengan seluruh simpul dibawahnya, membentuk sebuah sub pohon dari P. Sub pohon yang terhubung dengan akar merupakan keseluruhan pohon tersebut. Sub pohon yang terhubung dengan simpul lain manapun dinamakan sub pohon asli (proper subtree).
Penyusunan pohon
Terdapat dua jenis pohon. Sebuah pohon tidak terurut (unordered tree) adalah sebuah pohon dalam arti struktural semata-mata, yang dapat dikatakan memberikan sebuah simpul yang tidak memiliki susunan untuk anak dari simpul tersebut. Sebuah pohon dengan suatu susunan ditentukan, sebagai contoh dengan mengisi bilangan asli berbeda ke setiap anak dari simpul tersebut, dinamakan sebuah pohon terurut (ordered tree), dan struktur data yang dibangun didalamnya dinamakan pohon terurut struktur data (ordered tree data structures). Sejauh ini pohon terurut merupakan bentuk umum dari pohon struktur data. Pohon biner terurut merupakan suatu jenis dari pohon terurut.
Hutan
Sebuah hutan adalah sebuah himpunan yang terdiri dari pohon terurut. Lintasan inorder, preorder, dan postorder didefinisikan secara rekursif untuk hutan.
– inorder
1. lewati inorder hutan yang dibentuk oleh sub pohon yang pertama dalam hutan, jika ada
2. kunjungi akar dari pohon pertama.
3. lewati inorder hutan yang dibentuk oleh sisa pohon dalam hutan, jika ada.
– preorder
1. kunjungi akar dari pohon pertama.
2. lewati preorder hutan yang dibentuk oleh sub pohon yang pertama dalam hutan, jika ada
3. lewati preorder hutan yang dibentuk oleh sisa pohon dalam hutan, jika ada.
– postorder
1. lewati postorder hutan yang dibentuk oleh sub pohon yang pertama dalam hutan, jika ada
2. lewati postorder hutan yang dibentuk oleh sisa pohon dalam hutan, jika ada.
3. kunjungi akar dari pohon pertama.
Penggambaran pohon
Ada banyak cara untuk menggambarkan pohon; pada umumnya penggambaran mewakili simpul sebagai rekor yang dialokasikan pada heap (bedakan dengan heap struktur data) yang mengacu pada anaknya, ayahnya, atau keduanya, atau seperti data materi dalam array, dengan hubungan diantaranya ditentukan oleh posisi mereka dalam array (contoh binary heap).
Pohon sebagai grafik
Dalam teori grafik, sebuah pohon adalah sebuah grafik asiklis yang terhubung. Pohon yang berakar merupakan sebuah grafik dengan sudut tunggal diluar sebagai akar. Dalam kasus ini, dua sudut apapun yang terhubung dengan sebuah sisi mewarisi hubungan orang tua dan anak. Sebuah grafik asiklis dengan bermacam-macam komponen yang terhubung atau himpunan dari pohon-pohon yang berakar kadang-kadang dipanggil hutan.
Metode traversal
Melangkah melalui materi dari pohon, dengan arti dari hubungan antara orang tua dan anak, dinamakan menelusuri pohon, dan tindakannya adalah sebuah jalan dari pohon. Seringkali, sebuah operasi mungkin dapat dilakukan sebagai penunjuk ysng mengacu pada simpul khusus. Sebuah penelusuran dimana setiap simpul ayah dikunjungi sebelum anaknya dinamakan pre-order walk, yaitu sebuah penelusuran dimana anaknya dikunjungi sebelum ayahnya masing-masing dinamakan post-order walk.
Operasi umum
* Menghitung seluruh materi (item)
* Pencarian untuk sebuah materi
* Menambahkan sebuah materi pada sebuah posisi tertentu dalam pohon
* Menghapus sebuah materi
* Mengeluarkan seluruh bagian dari sebuah pohon pruning
* Menambahkan seluruh bagian ke sebuah pohon grafting
* Menemukan akar untuk simpul apapun
Penggunaan umum
* Memanipulasi data secara hierarki
* Membuat informasi mudah untuk dicari
* Memanipulasi data sorted lists
0 komentar:
Post a Comment